УДК 517

THE MAXIMUM OF SOME FUNCTIONAL FOR HOLOMORPHIC AND UNIVALENT FUNCTIONS WITH REAL COEFFICIENTS

WIESŁAW MAJCHRZAK AND ANDRZEJ SZWANKOWSKI

In the paper the maximum of the functional $a_2^k a_3^m (a_3 - \alpha a_2^2)$ in the class S_R of functions $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, $a_n = \overline{a_n}$, holomorphic and univalent in the unit disc is obtained for α real and k, m positive integers.

 ${\bf 0.}$ We consider a functional

$$H(f) = a_2^k a_3^m \left(a_3 - \alpha a_2^2 \right) \tag{1}$$

for $k, m = 1, 2, ..., \alpha \in \mathbb{R}$, defined on the class S_R of functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \qquad a_n = \overline{a_n}, \tag{2}$$

holomorphic and univalent in the unit disc Δ .

In papers [2], [3], [6], the extremal values of functional (1) were determined in the cases:

 $1^{\circ} m = 0, k = 0, 1, 2, \dots,$

 $2^{o} k = 0, m = 1, 2, \dots$

In the case m = 0 and $k = 0, 1, 2, 3, \ldots$, the maximum of the functional |H(f)| for functions f belonging to the well-known class S was also determined [1], [5], [8].

The aim of the present paper is to obtain the maximum of functional (1) in the class S_R .

© Wiesław Majchrzak and Andrzej Szwankowski, 1996

1. The functional H(f) is continuous, whereas the class S_R is compact in the topology of locally uniform convergence in the unit disc, therefore there exist functions $f^* \in S_R$, called further extremal ones, for which

$$H(f^*) = \max_{f \in S_B} H(f).$$

It is known [2] that each extremal function from the class S_R is a solution of a differential-functional equation which, in the case of the functional H(f), has the following form:

$$\left[\frac{zf'(z)}{f(z)}\right]^2 \frac{B_1 f(z) + B_2}{f^2(z)} = \frac{B_2 z^4 + B_1 z^3 + B_0 z^2 + B_1 z + B_2}{z^2}, \quad z \in \Delta,$$
(3)

where

$$B_1 = a_2^{k-1} a_3^{m-1} \left[(ka_3 + 2ma_2^2)(a_3 - \alpha a_2^2) + 2(1 - \alpha)a_2^2 a_3 \right], \quad (4)$$

$$B_2 = a_2^k a_3^{m-1} \left[m(a_3 - \alpha a_2^2) + a_3 \right], \tag{5}$$

$$B_0 = (2 + 2m + k)a_2^k a_3^m (a_3 - \alpha a_2^2), \tag{6}$$

with that the right-hand side of the equation (3) is non-negative on the circle |z| = 1 and has at least one double zero on this circle; besides, the coefficient B_0 is positive.

It is easy to notice that no function (2), for which $a_2 = 0$ or $a_3 = 0$, is an extremal function. Consequently, in our further considerations we assume the coefficients a_2 and a_3 of extremal functions to be different from zero.

At present, we shall successively consider all the admissible cases of the factorization of the numerator of the right-hand side of equation (3), also taking account of the vanishing or the non-vanishing of the coefficients B_1 , B_2 .

2. At first, we consider the case when equation (3) has the form

$$\left[\frac{zf'(z)}{f(z)}\right]^{2} \frac{B_{1}f(z) + B_{2}}{f^{2}(z)} = \\ = B_{2}\frac{(z-\varepsilon_{1})^{2}(z-\varepsilon_{2}r)(z-\varepsilon_{2}r^{-1})}{z^{2}}, \quad z \in \Delta, \quad B_{1} \cdot B_{2} \neq 0,$$
(a)

where $\varepsilon_1 = \pm 1$, $\varepsilon_2 = \pm 1$, $r \in (0, 1)$.

Comparing the coefficients in the numerators of the right-hand sides of equations (3) and (a), we obtain, among other things,

$$2 + 2\varepsilon \left(r + \frac{1}{r}\right) = \frac{B_0}{B_2} \tag{7}$$

where $\varepsilon = \varepsilon_1 \varepsilon_2 = \pm 1$.

Whereas, integrating equation (a) and comparing the constant terms of the expansions of both sides in Laurent series, we get

$$\log \frac{2 + \left(r + \frac{1}{r}\right)\varepsilon}{(r^{-1} - r)\varepsilon} + \frac{r + r^{-1} + 2\varepsilon}{2 + (r + r^{-1})\varepsilon} \log \frac{1 - r}{1 + r} = \frac{2(a_2 + 2\varepsilon_1)\varepsilon_1}{2 + r + r^{-1}}, \quad (8)$$

whence

$$a_2 = -2\varepsilon_1, \qquad \varepsilon_1 = \pm 1, \qquad (9)$$

which, in consequence, yields

$$a_3 = 3\varepsilon_1^2 = 3. (10)$$

Taking account of (9) and (10) in (7), from the forms of B_0, B_2 we obtain

$$\frac{3(2+2m+k)(3-4\alpha)}{3+3m-4\alpha m} = 2 + 2\varepsilon(r+\frac{1}{r}) \text{ for } \alpha \neq \frac{3m+3}{4m}.$$
 (11)

The study of the dependence of α on r described by formula (11) in the cases $\varepsilon = \pm 1$ as well as the examination of the values of the functional H(f) for a_2 and a_3 of forms (9) and (10), where $\varepsilon_1 = \pm 1$, imply

LEMMA 1. If the extremal function satisfies equation (a), then

$$H(f) = 2^k 3^m (3 - 4\alpha) \text{ for } \alpha < \alpha_1, \quad k, m = 1, 2, \dots,$$
(12)

and

$$H(f) = 2^{k} 3^{m} (4\alpha - 3) \quad \text{for } \alpha \in \left(\alpha_{2}, \frac{3m + 3}{4m}\right) \cup \left(\frac{3m + 3}{4m}, +\infty\right),$$

$$k = 1, 3, \dots, \ m = 1, 2, \dots,$$
(13)

where $\alpha_1 = \frac{3k}{4k+8}$, $\alpha_2 = \frac{3(8m+3k+8)}{4(8m+3k+6)}$.

Values (12) and (13) are taken by the functional H(f) for the Koebe function only. For $\alpha \in \langle \alpha_1, \alpha_2 \rangle$ and k, m = 1, 2, ... as well as for $\alpha > \alpha_2$ and k = 2, 4, ..., m = 1, 2, ..., the extremal function does not satisfy equation (a).

3. Let us now consider equation (3) under the assumption that $B_1 \neq 0$ and $B_2 = 0$. After simple calculations we get $B_0 = B_1 a_2$, whence equation (3) takes the form

$$\left[\frac{zf'(z)}{f(z)}\right]^2 \frac{1}{f(z)} = \frac{z^2 + a_2 z + 1}{z}, \quad z \in \Delta.$$
 (b)

It follows from the general properties of equation (3) that

$$a_2^2 = 4$$

and, in consequence,

$$a_3 = \frac{4\alpha m}{m+1}.$$

Summing up, we obtain

LEMMA 2. If the extremal function satisfies equation (b), then

$$H(f) = 2^{2m+k+2} m^m \left(\frac{\alpha}{m+1}\right)^{m+1}$$
(14)

for $\alpha = \frac{3m+3}{4m}$ and $m = 1, 2, 3, \dots, k = 1, 3, 5, \dots$

For the remaining values of α , the extremal function fails to satisfy equation (b).

Value (14) is taken by the functional H(f) for the Koebe function only.

4. The successive form of equation (3) to be considered is

$$\left[\frac{zf'(z)}{f(z)}\right]^2 \frac{B_1 f(z) + B_2}{f^2(z)} = B_2 \frac{(z - z_0)^2 (z - \overline{z_0})^2}{z^2}, \quad z \in \Delta, \qquad (c)$$

where $z_0 = e^{i\psi}$, $\psi \in \mathbb{R}$, under the condition $B_1B_2 \neq 0$.

Comparing the coefficients in equations (3) and (c), we get

$$\frac{B_1}{B_2} = -4\cos\psi,\tag{15}$$

$$\frac{B_0}{B_2} = 2 + 4\cos^2\psi.$$
(16)

After integrating equation (c) and making use of the fact ([4]), that there exists $x \in \mathbb{R}$ such that $f(e^{ix}) = -\frac{B_2}{B_1}$, as well as of (15) and (16), we obtain

$$a_2 = 2\cos\psi(-1 + \log\cos\psi),\tag{17}$$

$$a_{3} = 1 + 2\cos^{2}\psi[1 + 2(-1 + \log\cos\psi)\log\cos\psi],$$
(18)

$$\alpha = \frac{1}{4} \frac{M_1}{M_1 + 2(1 + 2\cos^2\psi)} \frac{1 + 2\cos^2\psi[1 + 2(-1 + \log\cos\psi)\log\cos\psi]}{\cos^2\psi(-1 + \log\cos\psi)^2}$$
(19)

where $M_1 = k(1 + 2\cos^2\psi) + 4(2 + 2m + k)\cos^2\psi(-1 + \log\cos\psi)\log\cos\psi$, and $\psi \in (0, \pi/2), k, m = 1, 2, 3, ...$

Consequently, we have proved

LEMMA 3. If the extremal function satisfies equation (c), then the value of the functional H(f) is given by a_2 and a_3 defined by formulae (17) and (18) where ψ is the function inverse to increasing function (19).

5. Now, consider the case when equation (3) is of the form

$$\left[\frac{zf'(z)}{f(z)}\right]^2 \frac{B_1 f(z) + B_2}{f^2(z)} = B_2 \frac{(z \pm 1)^4}{z^2}, \quad B_1 \cdot B_2 \neq 0, \tag{d}$$

with that

$$\frac{B_1}{B_2} = \mp 4,\tag{20}$$

$$\frac{B_0}{B_2} = 6.$$
 (21)

Taking account of (20) in equation (d), after integrating we obtain

$$\frac{\sqrt{1 \pm 4f(z)}}{f(z)} \pm 2\log\frac{\pm 4f(z)}{\left(\sqrt{1 \pm 4f(z)} + 1\right)^2} = \frac{1}{z} \pm 2\log z - z + C \quad (22)$$

where C is a constant, $\sqrt{1} = 1$, $\log(-1) = \pi i$. Comparing the constant terms, we get

$$C = \pm 2 + a_2 \mp 2 \log(\mp 1). \tag{23}$$

On the other hand, it is well known that there exists a point $z = e^{ix}$, $x \in \mathbb{R}$, for which $f(e^{ix}) = \pm \frac{1}{4}$. This and (22) imply

$$\operatorname{Re} C = 0. \tag{24}$$

Finally, from (23) and (24) we have

$$a_2 = \mp 2,$$

and so,

$$a_3 = 3.$$

Putting the above values of the coefficients a_2 and a_3 in (20) or (21), we obtain

$$\alpha = \frac{3k}{4k+8}$$

To sum up, we have shown

LEMMA 4. If the extremal function satisfies an equation of form (d), then

$$H(f) = 2^k 3^m (3 - 4\alpha)$$

for $k, m = 1, 2, 3, \dots, \alpha = \frac{3k}{4k+8}$.

For $\alpha \neq \frac{3k}{4k+8}$, $k = 1, 2, 3, \ldots$, the extremal function fails to satisfy equation (d).

6. To finish with, let us consider the case when $B_1 = 0$ and $B_2 \neq 0$ in equation (3). Then this equation is of the form

$$\left[\frac{zf'(z)}{f(z)}\right]^2 \frac{1}{f^2(z)} = \frac{(z-z_0)^2(z-z_1)^2}{z^2}$$
(25)

where $|z_0| = |z_1| = 1$ and $z_1 \neq z_0$.

Comparing the coefficients of equations (25) and (3), we get $z_1 = -z_0$ and $z_0^2 = 1$ or $z_0^2 = -1$. However, it turns out that, for $z_0^2 = -1$, the solution of equation (25) is not holomorphic in the disc Δ . Finally, equation (25) takes the form

$$\left[\frac{zf'(z)}{f(z)}\right]^2 \frac{1}{f^2(z)} = \frac{(z-1)^2(z+1)^2}{z^2}.$$
 (e)

Integrating equation (e) and, next, comparing the constant terms, we obtain

$$a_3 - a_2^2 = -1. (26)$$

Hence and from the condition $B_1 = 0$ we have

$$\begin{cases}
 a_2^2 = \frac{2k + 2m + 2 - (k+2)\alpha + \sqrt{D}}{2(1-\alpha)(k+2m+2)} \\
 a_3 = \frac{(k+4m+2)\alpha - 2(m+1) + \sqrt{D}}{2(1-\alpha)(k+2m+2)}
\end{cases}$$
(27)

or

$$\begin{cases}
 a_2^2 = \frac{k + 2m + (k+2)(1-\alpha) - \sqrt{D}}{2(1-\alpha)(k+2m+2)} \\
 a_3 = \frac{(k+4m+2)\alpha - 2(m+1) - \sqrt{D}}{2(1-\alpha)(k+2m+2)}
\end{cases}$$
(28)

where $D = [2(m+1) - (k+2)\alpha]^2 + 8 k m \alpha$, $k, m = 1, 2, 3, \dots$

It follows from the conditions $a_2^2 \leq 4$ and $-1 \leq a_3 \leq 3$ that system (27) has a solution only for $\alpha \in (0, \alpha_3)$ where

$$\alpha_3 = \frac{9k^2 + 48m^2 + 42km + 42k + 96m + 48}{12k^2 + 64m^2 + 56km + 48k + 112m + 48}, \quad k, m = 1, 2, 3, \dots,$$

while system (28) has a solution for $\alpha > 0$, with that, for $\alpha = 1$, $a_2^2 = \frac{k}{k+2m}$ and $a_3 = \frac{-2m}{k+2m}$.

Remark 1 If (a_2^2, a_3) is a solution of system (27) or (28), then, for any positive integers k, m and for $\alpha > 0$

$$a_3 - \alpha \, a_2^2 < 0. \tag{30}$$

Remark 2 If k, m = 1, 2, 3, ... and $\alpha \in (0, 1)$, then it follows from system (27) that $a_3 > 0$, whereas for system (28) — that $a_3 < 0$.

The above considerations imply

LEMMA 5. If k = 1, 3, ..., m = 1, 2, ... and the extremal function satisfies equation (e), then the value of the functional H(f) is defined by system (27) for $\alpha \in (0, \alpha_3)$ or by system (28) — for $\alpha \in (0, +\infty)$;

If k = 2, 4, ..., m = 1, 3, ... and the extremal function satisfies equation (e), then the value of the functional H(f) is defined by system (28) for $\alpha \in (0, +\infty)$;

If k = 2, 4, ..., m = 2, 4, ..., then there exists no extremal function satisfying equation (e).

7. Let us introduce the following notations:

$$M_2(k, m, \psi(\alpha)) = a_2^k a_3^m (a_3 - \alpha a_2^2)$$

where a_2, a_3 are defined by formulae (17), (18), and $\psi(\alpha)$ is the function inverse to the increasing function $\alpha = \alpha(\psi), \psi \in (0, \pi/2)$, given by the formula (19);

$$M_3(k, m, \alpha) = a_2^k a_3^m (a_3 - \alpha a_2^2)$$

where a_2 ans a_3 are defined by equations (27);

$$M_4(k, m, \alpha) = a_2^k a_3^m (a_3 - \alpha a_2^2)$$

where a_2 and a_3 are defined by equations (28).

Lemmas 1–5 and the continuity of the functional H(f) in the compact class S_R , by proceeding similarly as in papers [2], [6], imply

THEOREM 1. For any function $f \in S_R$: 1° if k = 2, 4, ..., m = 2, 4, ..., then

$$H(f) \leq \begin{cases} 2^k 3^m (3 - 4\alpha) & \text{for } \alpha \leq \alpha_1, \\ M_2(k, m, \psi(\alpha)) & \text{for } \alpha > \alpha_1; \end{cases}$$

 2° if $k = 1, 3, \ldots, m = 1, 2, \ldots$, then

$$H(f) \leq \begin{cases} 2^k 3^m (3 - 4\alpha) & \text{for } \alpha \leq \alpha_1, \\ M_2(k, m, \psi(\alpha)) & \text{for } \alpha_1 < \alpha \leq \alpha_5, \\ M_3(k, m, \alpha) & \text{for } \alpha_5 < \alpha \leq \alpha_2, \\ 2^k 3^m (4\alpha - 3) & \text{for } \alpha > \alpha_2; \end{cases}$$

 3° if $k = 2, 4, \ldots, m = 1, 3, \ldots$, then

$$H(f) \leq \begin{cases} 2^k 3^m (3-4\alpha) & \text{for } \alpha \leq \alpha_1, \\ M_2(k,m,\alpha) & \text{for } \alpha_1 < \alpha \leq \alpha_4, \\ M_4(k,m,\alpha) & \text{for } \alpha > \alpha_4, \end{cases}$$

where $\alpha_1 = \frac{3k}{4k+8}$, $\alpha_2 = \frac{3(8m+3k+8)}{4(8m+3k+6)}$, while α_4, α_5 are the only roots of the equations $M_2(k, m, \psi(\alpha)) = M_4(k, m, \alpha)$ and

 $M_2(k, m, \psi(\alpha)) = M_3(k, m, \alpha)$, respectively. All the estimates given above are exact.

Remark 3 Theorem 1 (3°) implies the well-known estimate of the functional $a_3^m(a_3 - \alpha a_2^2)$ for $m = 1, 3, 5, \ldots, \alpha \in \mathbb{R}$ [6].

For $m = 2, 4, \ldots$, from Theorem 1 (1°) we obtain the estimate of the functional $a_3^m (a_3 - \alpha a_2^2)$ for $\alpha \leq m + 1$ only. For $\alpha > m + 1$, it is known [6] that the only function extremal with respect to this functional is the function with the coefficients $a_2 = 0$ and $a_3 = 1$. This function, however is not extremal with respect to the functional H(f) investigated in our paper.

From Theorem 1 we do not obtain directly any estimate of the functional $a_2^k(a_3 - \alpha a_2^2)$, either (see [2]), on account of the necessary assumption $m \neq 0$ used in the proof of Lemma 1.

Литература

- Jakubowski Z.J., Majchrzak W., Szwankowski A., On some extrem al problem in the class S of functions holomorphic and univalent in the unit disc, Ann. UMCS 40 no. 7 (1986), 63-78.
- Jakubowski Z.J., Szwankowski A., On some extremal problem in the class of holomorphic symmetric univalent functions, Comment. Math. 29 (1990), 195-207.
- [3] —, On the minimum of the functional a^m₂(a₃ αa²₂) in the class of holomorphic and univalent functions with the real coefficient s, Bull. Soc. Sci. Lettres de Lódź 41 no. 11 (1991), 69–78.
- [4] Kirwan W.E., A note on extremal problems for certain classes of analytic functions, Proc. Amer. Math. Soc. 17 (1966), 1028-1030.

- [5] Majchrzak W., Szwankowski A., On the maximum of the Jakubowsk i functional in the class of holomorphic and univalent functions, Mathematica (Cluj), 36 (59) no. 2 (1995), 169-177.
- [6] Majchrzak W., Szwankowski A., The bounds of some functional f or holomorphic and univalent functions with real coefficients, Bull. Soc. Sci. Lettres de Łódź 45 no. 20 (1995), 27-37.
- [7] Schaeffer A.C., Spencer D.C., Coefficient regions for schlich t functions, Amer. Math. Soc., Colloq. Publ. 35 (1950).
- [8] Szwankowski A., Estimation of the functional |a₃ αa₂²| in the class S of holomorphic and univalent functions for α complex, Acta Univ. Lodz. 1 (1984), 151-177. Abstracts Conference on Analytic Functions, Kozubnik 1979, 54.

Institute of Mathematics University of Łódź ul. Banacha 22, 90-238 Łódź, Poland