THE MAXIMUM OF SOME FUNCTIONAL FOR HOLOMORPHIC AND UNIVALENT FUNCTIONS WITH REAL COEFFICIENTS

WiesŁaw Majchrzak and Andrzej Szwankowski

In the paper the maximum of the functional $a_{2}^{k} a_{3}^{m}\left(a_{3}-\alpha a_{2}^{2}\right)$ in the class S_{R} of functions $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, a_{n}=\overline{a_{n}}$, holomorphic and univalent in the unit disc is obtained for α real and k, m positive integers.
0. We consider a functional

$$
\begin{equation*}
H(f)=a_{2}^{k} a_{3}^{m}\left(a_{3}-\alpha a_{2}^{2}\right) \tag{1}
\end{equation*}
$$

for $k, m=1,2, \ldots, \alpha \in \mathbb{R}$, defined on the class S_{R} of functions

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad a_{n}=\overline{a_{n}}, \tag{2}
\end{equation*}
$$

holomorphic and univalent in the unit disc Δ.
In papers [2], [3], [6], the extremal values of functional (1) were determined in the cases:
$1^{o} m=0, k=0,1,2, \ldots$,
$2^{o} k=0, m=1,2, \ldots$.
In the case $m=0$ and $k=0,1,2,3, \ldots$, the maximum of the functional $|H(f)|$ for functions f belonging to the well-known class S was also determined [1], [5], [8].

The aim of the present paper is to obtain the maximum of functional (1) in the class S_{R}.

[^0]1. The functional $H(f)$ is continuous, whereas the class S_{R} is compact in the topology of locally uniform convergence in the unit disc, therefore there exist functions $f^{*} \in S_{R}$, called further extremal ones, for which

$$
H\left(f^{*}\right)=\max _{f \in S_{R}} H(f)
$$

It is known [2] that each extremal function from the class S_{R} is a solution of a differential-functional equation which, in the case of the functional $H(f)$, has the following form:

$$
\begin{equation*}
\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{2} \frac{B_{1} f(z)+B_{2}}{f^{2}(z)}=\frac{B_{2} z^{4}+B_{1} z^{3}+B_{0} z^{2}+B_{1} z+B_{2}}{z^{2}}, \quad z \in \Delta \tag{3}
\end{equation*}
$$

where

$$
\begin{align*}
B_{1} & =a_{2}^{k-1} a_{3}^{m-1}\left[\left(k a_{3}+2 m a_{2}^{2}\right)\left(a_{3}-\alpha a_{2}^{2}\right)+2(1-\alpha) a_{2}^{2} a_{3}\right] \tag{4}\\
B_{2} & =a_{2}^{k} a_{3}^{m-1}\left[m\left(a_{3}-\alpha a_{2}^{2}\right)+a_{3}\right] \tag{5}\\
B_{0} & =(2+2 m+k) a_{2}^{k} a_{3}^{m}\left(a_{3}-\alpha a_{2}^{2}\right) \tag{6}
\end{align*}
$$

with that the right-hand side of the equation (3) is non-negative on the circle $|z|=1$ and has at least one double zero on this circle; besides, the coefficient B_{0} is positive.

It is easy to notice that no function (2), for which $a_{2}=0$ or $a_{3}=0$, is an extremal function. Consequently, in our further considerations we assume the coefficients a_{2} and a_{3} of extremal functions to be different from zero.

At present, we shall succesively consider all the admissible cases of the factorization of the numerator of the right-hand side of equation (3), also taking account of the vanishing or the non-vanishing of the coefficients B_{1}, B_{2}.
2. At first, we consider the case when equation (3) has the form

$$
\begin{align*}
& {\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{2} \frac{B_{1} f(z)+B_{2}}{f^{2}(z)}=} \\
& =B_{2} \frac{\left(z-\varepsilon_{1}\right)^{2}\left(z-\varepsilon_{2} r\right)\left(z-\varepsilon_{2} r^{-1}\right)}{z^{2}}, \quad z \in \Delta, \quad B_{1} \cdot B_{2} \neq 0 \tag{a}
\end{align*}
$$

where $\varepsilon_{1}= \pm 1, \varepsilon_{2}= \pm 1, r \in(0,1)$.
Comparing the coefficients in the numerators of the right-hand sides of equations (3) and (a), we obtain, among other things,

$$
\begin{equation*}
2+2 \varepsilon\left(r+\frac{1}{r}\right)=\frac{B_{0}}{B_{2}} \tag{7}
\end{equation*}
$$

where $\varepsilon=\varepsilon_{1} \varepsilon_{2}= \pm 1$.
Whereas, integrating equation (a) and comparing the constant terms of the expansions of both sides in Laurent series, we get

$$
\begin{equation*}
\log \frac{2+\left(r+\frac{1}{r}\right) \varepsilon}{\left(r^{-1}-r\right) \varepsilon}+\frac{r+r^{-1}+2 \varepsilon}{2+\left(r+r^{-1}\right) \varepsilon} \log \frac{1-r}{1+r}=\frac{2\left(a_{2}+2 \varepsilon_{1}\right) \varepsilon_{1}}{2+r+r^{-1}} \tag{8}
\end{equation*}
$$

whence

$$
\begin{equation*}
a_{2}=-2 \varepsilon_{1}, \quad \varepsilon_{1}= \pm 1 \tag{9}
\end{equation*}
$$

which, in consequence, yields

$$
\begin{equation*}
a_{3}=3 \varepsilon_{1}^{2}=3 \tag{10}
\end{equation*}
$$

Taking account of (9) and (10) in (7), from the forms of B_{0}, B_{2} we obtain

$$
\begin{equation*}
\frac{3(2+2 m+k)(3-4 \alpha)}{3+3 m-4 \alpha m}=2+2 \varepsilon\left(r+\frac{1}{r}\right) \text { for } \alpha \neq \frac{3 m+3}{4 m} \tag{11}
\end{equation*}
$$

The study of the dependence of α on r described by formula (11) in the cases $\varepsilon= \pm 1$ as well as the examination of the values of the functional $H(f)$ for a_{2} and a_{3} of forms (9) and (10), where $\varepsilon_{1}= \pm 1$, imply
Lemma 1. If the extremal function satisfies equation (a), then

$$
\begin{equation*}
H(f)=2^{k} 3^{m}(3-4 \alpha) \text { for } \alpha<\alpha_{1}, \quad k, m=1,2, \ldots, \tag{12}
\end{equation*}
$$

and

$$
\begin{gather*}
H(f)=2^{k} 3^{m}(4 \alpha-3) \quad \text { for } \alpha \in\left(\alpha_{2}, \frac{3 m+3}{4 m}\right) \cup\left(\frac{3 m+3}{4 m},+\infty\right), \\
k=1,3, \ldots, m=1,2, \ldots \tag{13}
\end{gather*}
$$

where $\alpha_{1}=\frac{3 k}{4 k+8}, \alpha_{2}=\frac{3(8 m+3 k+8)}{4(8 m+3 k+6)}$.

Values (12) and (13) are taken by the functional $H(f)$ for the Koebe function only. For $\alpha \in\left\langle\alpha_{1}, \alpha_{2}\right\rangle$ and $k, m=1,2, \ldots$ as well as for $\alpha>\alpha_{2}$ and $k=2,4, \ldots, m=1,2, \ldots$, the extremal function does not satisfy equation (a).
3. Let us now consider equation (3) under the assumption that $B_{1} \neq 0$ and $B_{2}=0$. After simple calculations we get $B_{0}=B_{1} a_{2}$, whence equation (3) takes the form

$$
\begin{equation*}
\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{2} \frac{1}{f(z)}=\frac{z^{2}+a_{2} z+1}{z}, \quad z \in \Delta . \tag{b}
\end{equation*}
$$

It follows from the general properties of equation (3) that

$$
a_{2}^{2}=4
$$

and, in consequence,

$$
a_{3}=\frac{4 \alpha m}{m+1}
$$

Summing up, we obtain
Lemma 2. If the extremal function satisfies equation (b), then

$$
\begin{equation*}
H(f)=2^{2 m+k+2} m^{m}\left(\frac{\alpha}{m+1}\right)^{m+1} \tag{14}
\end{equation*}
$$

for $\alpha=\frac{3 m+3}{4 m}$ and $m=1,2,3, \ldots, k=1,3,5, \ldots$.
For the remaining values of α, the extremal function fails to satisfy equation (b).

Value (14) is taken by the functional $H(f)$ for the Koebe function only.
4. The successive form of equation (3) to be considered is

$$
\begin{equation*}
\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{2} \frac{B_{1} f(z)+B_{2}}{f^{2}(z)}=B_{2} \frac{\left(z-z_{0}\right)^{2}\left(z-\overline{z_{0}}\right)^{2}}{z^{2}}, \quad z \in \Delta \tag{c}
\end{equation*}
$$

where $z_{0}=e^{i \psi}, \psi \in \mathbb{R}$, under the condition $B_{1} B_{2} \neq 0$.

Comparing the coefficients in equations (3) and (c), we get

$$
\begin{gather*}
\frac{B_{1}}{B_{2}}=-4 \cos \psi \tag{15}\\
\frac{B_{0}}{B_{2}}=2+4 \cos ^{2} \psi \tag{16}
\end{gather*}
$$

After integrating equation (c) and making use of the fact ([4]), that there exists $x \in \mathbb{R}$ such that $f\left(e^{i x}\right)=-\frac{B_{2}}{B_{1}}$, as well as of (15) and (16), we obtain

$$
\begin{gather*}
a_{2}=2 \cos \psi(-1+\log \cos \psi), \tag{17}\\
a_{3}=1+2 \cos ^{2} \psi[1+2(-1+\log \cos \psi) \log \cos \psi], \tag{18}\\
\alpha=\frac{1}{4} \frac{M_{1}}{M_{1}+2\left(1+2 \cos ^{2} \psi\right)} \frac{1+2 \cos ^{2} \psi[1+2(-1+\log \cos \psi) \log \cos \psi]}{\cos ^{2} \psi(-1+\log \cos \psi)^{2}} \tag{19}
\end{gather*}
$$

where $M_{1}=k\left(1+2 \cos ^{2} \psi\right)+4(2+2 m+k) \cos ^{2} \psi(-1+\log \cos \psi) \log \cos \psi$, and $\psi \in(0, \pi / 2), k, m=1,2,3, \ldots$.

Consequently, we have proved
Lemma 3. If the extremal function satisfies equation (c), then the value of the functional $H(f)$ is given by a_{2} and a_{3} defined by formulae (17) and (18) where ψ is the function inverse to increasing function (19).
5. Now, consider the case when equation (3) is of the form

$$
\begin{equation*}
\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{2} \frac{B_{1} f(z)+B_{2}}{f^{2}(z)}=B_{2} \frac{(z \pm 1)^{4}}{z^{2}}, \quad B_{1} \cdot B_{2} \neq 0 \tag{d}
\end{equation*}
$$

with that

$$
\begin{gather*}
\frac{B_{1}}{B_{2}}=\mp 4, \tag{20}\\
\frac{B_{0}}{B_{2}}=6 . \tag{21}
\end{gather*}
$$

Taking account of (20) in equation (d), after integrating we obtain

$$
\begin{equation*}
\frac{\sqrt{1 \mp 4 f(z)}}{f(z)} \pm 2 \log \frac{\mp 4 f(z)}{(\sqrt{1 \mp 4 f(z)}+1)^{2}}=\frac{1}{z} \pm 2 \log z-z+C \tag{22}
\end{equation*}
$$

where C is a constant, $\sqrt{1}=1, \log (-1)=\pi i$.
Comparing the constant terms, we get

$$
\begin{equation*}
C= \pm 2+a_{2} \mp 2 \log (\mp 1) . \tag{23}
\end{equation*}
$$

On the other hand, it is well known that there exists a point $z=e^{i x}$, $x \in \mathbb{R}$, for which $f\left(e^{i x}\right)= \pm \frac{1}{4}$. This and (22) imply

$$
\begin{equation*}
\operatorname{Re} C=0 . \tag{24}
\end{equation*}
$$

Finally, from (23) and (24) we have

$$
a_{2}=\mp 2,
$$

and so,

$$
a_{3}=3 .
$$

Putting the above values of the coefficients a_{2} and a_{3} in (20) or (21), we obtain

$$
\alpha=\frac{3 k}{4 k+8} .
$$

To sum up, we have shown
Lemma 4. If the extremal function satisfies an equation of form (d), then

$$
H(f)=2^{k} 3^{m}(3-4 \alpha)
$$

for $k, m=1,2,3, \ldots, \alpha=\frac{3 k}{4 k+8}$.
For $\alpha \neq \frac{3 k}{4 k+8}, k=1,2,3, \ldots$, the extremal function fails to satisfy equation (d).
6. To finish with, let us consider the case when $B_{1}=0$ and $B_{2} \neq 0$ in equation (3). Then this equation is of the form

$$
\begin{equation*}
\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{2} \frac{1}{f^{2}(z)}=\frac{\left(z-z_{0}\right)^{2}\left(z-z_{1}\right)^{2}}{z^{2}} \tag{25}
\end{equation*}
$$

where $\left|z_{0}\right|=\left|z_{1}\right|=1$ and $z_{1} \neq z_{0}$.
Comparing the coefficients of equations (25) and (3), we get $z_{1}=-z_{0}$ and $z_{0}^{2}=1$ or $z_{0}^{2}=-1$. However, it turns out that, for $z_{0}^{2}=-1$, the solution of equation (25) is not holomorphic in the disc Δ.

Finally, equation (25) takes the form

$$
\begin{equation*}
\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{2} \frac{1}{f^{2}(z)}=\frac{(z-1)^{2}(z+1)^{2}}{z^{2}} \tag{e}
\end{equation*}
$$

Integrating equation (e) and, next, comparing the constant terms, we obtain

$$
\begin{equation*}
a_{3}-a_{2}^{2}=-1 \tag{26}
\end{equation*}
$$

Hence and from the condition $B_{1}=0$ we have

$$
\left\{\begin{array}{l}
a_{2}^{2}=\frac{2 k+2 m+2-(k+2) \alpha+\sqrt{D}}{2(1-\alpha)(k+2 m+2)} \tag{27}\\
a_{3}=\frac{(k+4 m+2) \alpha-2(m+1)+\sqrt{D}}{2(1-\alpha)(k+2 m+2)}
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
a_{2}^{2}=\frac{k+2 m+(k+2)(1-\alpha)-\sqrt{D}}{2(1-\alpha)(k+2 m+2)} \tag{28}\\
a_{3}=\frac{(k+4 m+2) \alpha-2(m+1)-\sqrt{D}}{2(1-\alpha)(k+2 m+2)}
\end{array}\right.
$$

where $D=[2(m+1)-(k+2) \alpha]^{2}+8 k m \alpha, k, m=1,2,3, \ldots$.
It follows from the conditions $a_{2}^{2} \leq 4$ and $-1 \leq a_{3} \leq 3$ that system (27) has a solution only for $\alpha \in\left(0, \alpha_{3}\right)$ where

$$
\begin{equation*}
\alpha_{3}=\frac{9 k^{2}+48 m^{2}+42 k m+42 k+96 m+48}{12 k^{2}+64 m^{2}+56 k m+48 k+112 m+48}, \quad k, m=1,2,3, \ldots \tag{29}
\end{equation*}
$$

while system (28) has a solution for $\alpha>0$, with that, for $\alpha=1, a_{2}^{2}=\frac{k}{k+2 m}$ and $a_{3}=\frac{-2 m}{k+2 m}$.

Remark 1 If $\left(a_{2}^{2}, a_{3}\right)$ is a solution of system (27) or (28), then, for any positive integers k, m and for $\alpha>0$

$$
\begin{equation*}
a_{3}-\alpha a_{2}^{2}<0 \tag{30}
\end{equation*}
$$

Remark 2 If $k, m=1,2,3, \ldots$ and $\alpha \in(0,1)$, then it follows from system (27) that $a_{3}>0$, whereas for system (28) - that $a_{3}<0$.

The above considerations imply
LEMMA 5. If $k=1,3, \ldots, m=1,2, \ldots$ and the extremal function satisfies equation (e), then the value of the functional $H(f)$ is defined by system (27) for $\alpha \in\left(0, \alpha_{3}\right)$ or by system (28) - for $\alpha \in(0,+\infty)$;

If $k=2,4, \ldots, m=1,3, \ldots$ and the extremal function satisfies equation (e), then the value of the functional $H(f)$ is defined by system (28) for $\alpha \in(0,+\infty)$;

If $k=2,4, \ldots, m=2,4, \ldots$, then there exists no extremal function satisfying equation (e).
7. Let us introduce the following notations:

$$
M_{2}(k, m, \psi(\alpha))=a_{2}^{k} a_{3}^{m}\left(a_{3}-\alpha a_{2}^{2}\right)
$$

where a_{2}, a_{3} are defined by formulae (17), (18), and $\psi(\alpha)$ is the function inverse to the increasing function $\alpha=\alpha(\psi), \psi \in(0, \pi / 2)$, given by the formula (19);

$$
M_{3}(k, m, \alpha)=a_{2}^{k} a_{3}^{m}\left(a_{3}-\alpha a_{2}^{2}\right)
$$

where a_{2} ans a_{3} are defined by equations (27);

$$
M_{4}(k, m, \alpha)=a_{2}^{k} a_{3}^{m}\left(a_{3}-\alpha a_{2}^{2}\right)
$$

where a_{2} ans a_{3} are defined by equations (28).
Lemmas 1-5 and the continuity of the functional $H(f)$ in the compact class S_{R}, by proceeding similarly as in papers [2], [6], imply

Theorem 1. For any function $f \in S_{R}$:
1° if $k=2,4, \ldots, m=2,4, \ldots$, then

$$
H(f) \leq\left\{\begin{array}{lll}
2^{k} 3^{m}(3-4 \alpha) & \text { for } & \alpha \leq \alpha_{1} \\
M_{2}(k, m, \psi(\alpha)) & \text { for } & \alpha>\alpha_{1}
\end{array}\right.
$$

2° if $k=1,3, \ldots, m=1,2, \ldots$, then

$$
H(f) \leq\left\{\begin{array}{lll}
2^{k} 3^{m}(3-4 \alpha) & \text { for } \quad \alpha \leq \alpha_{1} \\
M_{2}(k, m, \psi(\alpha)) & \text { for } \quad \alpha_{1}<\alpha \leq \alpha_{5} \\
M_{3}(k, m, \alpha) & \text { for } \quad \alpha_{5}<\alpha \leq \alpha_{2} \\
2^{k} 3^{m}(4 \alpha-3) & \text { for } \quad \alpha>\alpha_{2}
\end{array}\right.
$$

3° if $k=2,4, \ldots, m=1,3, \ldots$, then

$$
H(f) \leq\left\{\begin{array}{lll}
2^{k} 3^{m}(3-4 \alpha) & \text { for } \quad \alpha \leq \alpha_{1}, \\
M_{2}(k, m, \alpha) & \text { for } \quad \alpha_{1}<\alpha \leq \alpha_{4} \\
M_{4}(k, m, \alpha) & \text { for } \quad \alpha>\alpha_{4}
\end{array}\right.
$$

where $\alpha_{1}=\frac{3 k}{4 k+8}, \alpha_{2}=\frac{3(8 m+3 k+8)}{4(8 m+3 k+6)}$, while α_{4}, α_{5} are the only roots of the equations $M_{2}(k, m, \psi(\alpha))=M_{4}(k, m, \alpha)$ and
$M_{2}(k, m, \psi(\alpha))=M_{3}(k, m, \alpha)$, respectively.
All the estimates given above are exact.
Remark 3 Theorem $1\left(3^{\circ}\right)$ implies the well-known estimate of the functional $a_{3}^{m}\left(a_{3}-\alpha a_{2}^{2}\right)$ for $m=1,3,5, \ldots, \alpha \in \mathbb{R}$
[6].
For $m=2,4, \ldots$, from Theorem $1\left(1^{o}\right)$ we obtain the estimate of the functional $a_{3}^{m}\left(a_{3}-\alpha a_{2}^{2}\right)$ for $\alpha \leq m+1$ only. For $\alpha>m+1$, it is known [6] that the only function extremal with respect to this functional is the function with the coefficients $a_{2}=0$ and $a_{3}=1$. This function, however is not extremal with respect to the functional $H(f)$ investigated in our paper.

From Theorem 1 we do not obtain directly any estimate of the functional $a_{2}^{k}\left(a_{3}-\alpha a_{2}^{2}\right)$, either (see [2]), on account of the necessary assumption $m \neq 0$ used in the proof of Lemma 1.

Литература

[1] Jakubowski Z.J., Majchrzak W., Szwankowski A., On some extrem al problem in the class S of functions holomorphic and univalent in the unit disc, Ann. UMCS 40 no. 7 (1986), 63-78.
[2] Jakubowski Z.J., Szwankowski A., On some extremal problem in the class of holomorphic symmetric univalent functions, Comment. Math. 29 (1990), 195-207.
[3] -- On the minimum of the functional $a_{2}^{m}\left(a_{3}-\alpha a_{2}^{2}\right)$ in the class of holomorphic and univalent functions with the real coefficient s, Bull. Soc. Sci. Lettres de Łódź 41 no. 11 (1991), 69-78.
[4] Kirwan W.E., A note on extremal problems for certain classes of analytic functions, Proc. Amer. Math. Soc. 17 (1966), 1028-1030.
[5] Majchrzak W., Szwankowski A., On the maximum of the Jakubowsk i functional in the class of holomorphic and univalent functions, Mathematica (Cluj), 36 (59) no. 2 (1995), 169-177.
[6] Majchrzak W., Szwankowski A., The bounds of some functional f or holomorphic and univalent functions with real coefficients, Bull. Soc. Sci. Lettres de Łódź 45 no. 20 (1995), 27-37.
[7] Schaeffer A.C., Spencer D.C., Coefficient regions for schlich t functions, Amer. Math. Soc., Colloq. Publ. 35 (1950).
[8] Szwankowski A., Estimation of the functional $\left|a_{3}-\alpha a_{2}^{2}\right|$ in the class S of holomorphic and univalent functions for α complex, Acta Univ. Lodz. 1 (1984), 151-177. Abstracts Conference on Analytic Functions, Kozubnik 1979, 54.

Institute of Mathematics
University of Lódź
ul. Banacha 22, 90-238 Lódź, Poland

[^0]: (c) Wiesław Majchrzak and Andrzej Szwankowski, 1996

