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THE MAXIMUM OF SOME FUNCTIONAL FORHOLOMORPHIC AND UNIVALENT FUNCTIONS WITHREAL COEFFICIENTS
Wies law Majchrzak and Andrzej Szwankowski
In the paper the maximum of the functional ak2am3 (a3 � �a22)in the class SR of functions f(z) = z + P1n=2 anzn, an = an,holomorphic and univalent in the unit disc is obtained for � realand k, m positive integers.

0. We consider a functional
H(f) = ak2am3 (a3 � �a22) (1)

for k;m = 1; 2; : : :, � 2 IR, de�ned on the class SR of functions
f(z) = z +

1X
n=2

anzn; an = an; (2)
holomorphic and univalent in the unit disc �.In papers [2], [3], [6], the extremal values of functional (1) were determinedin the cases:1o m = 0, k = 0; 1; 2; : : :,2o k = 0, m = 1; 2; : : :.In the casem = 0 and k = 0; 1; 2; 3; : : :, the maximum of the functional
jH(f)j for functions f belonging to the well-known class S was also determined[1], [5], [8].The aim of the present paper is to obtain the maximum of functional(1) in the class SR.
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1. The functional H(f) is continuous, whereas the class SR is compactin the topology of locally uniform convergence in the unit disc, thereforethere exist functions f� 2 SR, called further extremal ones, for which
H(f�) = maxf2SRH(f):

It is known [2] that each extremal function from the class SR is asolution of a di�erential-functional equation which, in the case of thefunctional H(f), has the following form:
�zf 0(z)
f(z)

�2 B1f(z) +B2
f2(z) = B2z4 +B1z3 +B0z2 +B1z +B2

z2 ; z 2 �;
(3)where

B1 = ak�12 am�13
�(ka3 + 2ma22)(a3 � �a22) + 2(1� �)a22a3

� ; (4)
B2 = ak2am�13

�m(a3 � �a22) + a3
� ; (5)

B0 = (2 + 2m+ k)ak2am3 (a3 � �a22); (6)
with that the right-hand side of the equation (3) is non-negative on thecircle jzj = 1 and has at least one double zero on this circle; besides, thecoe�cient B0 is positive.It is easy to notice that no function (2), for which a2 = 0 or a3 = 0,is an extremal function. Consequently, in our further considerations weassume the coe�cients a2 and a3 of extremal functions to be di�erentfrom zero.At present, we shall succesively consider all the admissible cases of thefactorization of the numerator of the right-hand side of equation (3), alsotaking account of the vanishing or the non-vanishing of the coe�cients
B1, B2.

2. At �rst, we consider the case when equation (3) has the form
�zf 0(z)
f(z)

�2 B1f(z) +B2
f2(z) =

= B2 (z � "1)2(z � "2r)(z � "2r�1)
z2 ; z 2 �; B1 �B2 6= 0; (a)
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where "1 = �1, "2 = �1, r 2 (0; 1).Comparing the coe�cients in the numerators of the right-hand sidesof equations (3) and (a), we obtain, among other things,
2 + 2"

�
r + 1

r
�

= B0
B2 (7)

where " = "1"2 = �1.Whereas, integrating equation (a) and comparing the constant termsof the expansions of both sides in Laurent series, we get
log 2 + �r + 1r

� "
(r�1 � r)" + r + r�1 + 2"

2 + (r + r�1)" log 1� r
1 + r = 2(a2 + 2"1)"1

2 + r + r�1 ; (8)
whence

a2 = �2"1; "1 = �1; (9)
which, in consequence, yields

a3 = 3 "21 = 3: (10)
Taking account of (9) and (10) in (7), from the forms of B0, B2 weobtain

3(2 + 2m+ k)(3� 4�)
3 + 3m� 4�m = 2 + 2"(r + 1

r ) for � 6= 3m+ 3
4m : (11)

The study of the dependence of � on r described by formula (11) inthe cases " = �1 as well as the examination of the values of the functional
H(f) for a2 and a3 of forms (9) and (10), where "1 = �1, imply
Lemma 1. If the extremal function satis�es equation (a), then

H(f) = 2k3m(3� 4�) for � < �1; k;m = 1; 2; : : : ; (12)
and

H(f) = 2k3m(4�� 3) for � 2
�
�2; 3m+ 3

4m
�
[
�3m+ 3

4m ;+1
�
;

k = 1; 3; : : : ; m = 1; 2; : : : ; (13)
where �1 = 3k4k+8 , �2 = 3(8m+3k+8)4(8m+3k+6) .
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Values (12) and (13) are taken by the functional H(f) for the Koebefunction only. For � 2 h�1; �2i and k;m = 1; 2; : : : as well as for � > �2and k = 2; 4; : : :, m = 1; 2; : : :, the extremal function does not satisfyequation (a).

3. Let us now consider equation (3) under the assumption that B1 6= 0and B2 = 0. After simple calculations we get B0 = B1a2, whence equation(3) takes the form�zf 0(z)
f(z)

�2 1
f(z) = z2 + a2z + 1

z ; z 2 �: (b)

It follows from the general properties of equation (3) that
a22 = 4

and, in consequence,
a3 = 4�m

m+ 1 :Summing up, we obtain
Lemma 2. If the extremal function satis�es equation (b), then

H(f) = 22m+k+2mm
� �
m+ 1

�m+1 (14)
for � = 3m+34m and m = 1; 2; 3; : : :, k = 1; 3; 5; : : :.

For the remaining values of �, the extremal function fails to satisfyequation (b).Value (14) is taken by the functional H(f) for the Koebe function only.

4. The successive form of equation (3) to be considered is�zf 0(z)
f(z)

�2 B1f(z) +B2
f2(z) = B2 (z � z0)2(z � z0)2

z2 ; z 2 �; (c)

where z0 = ei ,  2 IR, under the condition B1B2 6= 0.
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Comparing the coe�cients in equations (3) and (c), we get
B1
B2 = �4 cos ; (15)

B0
B2 = 2 + 4 cos2  : (16)

After integrating equation (c) and making use of the fact ([4]), thatthere exists x 2 IR such that f(eix) = �B2B1 , as well as of (15) and (16),we obtain
a2 = 2 cos (�1 + log cos ); (17)

a3 = 1 + 2 cos2  [1 + 2(�1 + log cos ) log cos ]; (18)
� = 1

4
M1

M1 + 2(1 + 2 cos2  )
1 + 2 cos2  [1 + 2(�1 + log cos ) log cos ]

cos2  (�1 + log cos )2 (19)whereM1 = k(1+2 cos2  )+4(2+2m+k) cos2  (�1+log cos ) log cos ,and  2 (0; �=2), k;m = 1; 2; 3; : : :.Consequently, we have proved
Lemma 3. If the extremal function satis�es equation (c), then the value
of the functional H(f) is given by a2 and a3 de�ned by formulae (17) and
(18) where  is the function inverse to increasing function (19).

5. Now, consider the case when equation (3) is of the form�zf 0(z)
f(z)

�2 B1f(z) +B2
f2(z) = B2 (z � 1)4

z2 ; B1 �B2 6= 0; (d)

with that B1
B2 = �4; (20)
B0
B2 = 6: (21)

Taking account of (20) in equation (d), after integrating we obtainp1� 4f(z)
f(z) � 2 log �4f(z)�p1� 4f(z) + 1

�2 = 1
z � 2 log z � z + C (22)
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where C is a constant, p1 = 1, log(�1) = �i.Comparing the constant terms, we get
C = �2 + a2 � 2 log(�1): (23)

On the other hand, it is well known that there exists a point z = eix,
x 2 IR, for which f(eix) = � 14 . This and (22) imply

ReC = 0: (24)
Finally, from (23) and (24) we have

a2 = �2;
and so,

a3 = 3:
Putting the above values of the coe�cients a2 and a3 in (20) or (21),we obtain

� = 3k
4k + 8 :To sum up, we have shown

Lemma 4. If the extremal function satis�es an equation of form (d), then

H(f) = 2k3m(3� 4�)
for k;m = 1; 2; 3; : : :, � = 3k4k+8 .

For � 6= 3k4k+8 , k = 1; 2; 3; : : :, the extremal function fails to satisfyequation (d).

6. To �nish with, let us consider the case when B1 = 0 and B2 6= 0 inequation (3). Then this equation is of the form�zf 0(z)
f(z)

�2 1
f2(z) = (z � z0)2(z � z1)2

z2 (25)
where jz0j = jz1j = 1 and z1 6= z0.Comparing the coe�cients of equations (25) and (3), we get z1 = �z0and z20 = 1 or z20 = �1. However, it turns out that, for z20 = �1, thesolution of equation (25) is not holomorphic in the disc �.
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Finally, equation (25) takes the form
�zf 0(z)
f(z)

�2 1
f2(z) = (z � 1)2(z + 1)2

z2 : (e)

Integrating equation (e) and, next, comparing the constant terms, weobtain
a3 � a22 = �1: (26)

Hence and from the condition B1 = 0 we have8>><
>>:

a22 = 2k + 2m+ 2� (k + 2)�+pD
2(1� �)(k + 2m+ 2)

a3 = (k + 4m+ 2)�� 2(m+ 1) +pD
2(1� �)(k + 2m+ 2)

(27)

or 8>><
>>:

a22 = k + 2m+ (k + 2)(1� �)�pD
2(1� �)(k + 2m+ 2)

a3 = (k + 4m+ 2)�� 2(m+ 1)�pD
2(1� �)(k + 2m+ 2)

(28)

where D = [2(m+ 1)� (k + 2)�]2 + 8 km�, k;m = 1; 2; 3; : : :.It follows from the conditions a22 � 4 and �1 � a3 � 3 that system(27) has a solution only for � 2 (0; �3) where
�3 = 9k2 + 48m2 + 42km+ 42k + 96m+ 48

12k2 + 64m2 + 56km+ 48k + 112m+ 48 ; k;m = 1; 2; 3; : : : ;
(29)while system (28) has a solution for � > 0, with that, for � = 1, a22 = kk+2mand a3 = �2mk+2m .

Remark 1 If (a22; a3) is a solution of system (27) or (28), then, for any
positive integers k;m and for � > 0

a3 � �a22 < 0: (30)

Remark 2 If k;m = 1; 2; 3; : : : and � 2 (0; 1), then it follows from system
(27) that a3 > 0, whereas for system (28) � that a3 < 0.



104 Wies law Majchrzak and Andrzej Szwankowski

The above considerations imply
Lemma 5. If k = 1; 3; : : :,m = 1; 2; : : : and the extremal function satis�es
equation (e), then the value of the functional H(f) is de�ned by system
(27) for � 2 (0; �3) or by system (28) � for � 2 (0;+1);

If k = 2; 4; : : :,m = 1; 3; : : : and the extremal function satis�es equation
(e), then the value of the functional H(f) is de�ned by system (28) for
� 2 (0;+1);

If k = 2; 4; : : :, m = 2; 4; : : :, then there exists no extremal function
satisfying equation (e).

7. Let us introduce the following notations:
M2(k;m;  (�)) = ak2am3 (a3 � �a22)

where a2; a3 are de�ned by formulae (17), (18), and  (�) is the functioninverse to the increasing function � = �( ),  2 (0; �=2), given by theformula (19);
M3(k;m; �) = ak2am3 (a3 � �a22)where a2 ans a3 are de�ned by equations (27);
M4(k;m; �) = ak2am3 (a3 � �a22)

where a2 ans a3 are de�ned by equations (28).Lemmas 1�5 and the continuity of the functional H(f) in the compactclass SR, by proceeding similarly as in papers [2], [6], imply
Theorem 1. For any function f 2 SR:
1o if k = 2; 4; : : :, m = 2; 4; : : :, then

H(f) �
� 2k3m(3� 4�) for � � �1;
M2(k;m;  (�)) for � > �1;

2 o if k = 1; 3; : : :, m = 1; 2; : : :, then

H(f) �

8>><
>>:

2k3m(3� 4�) for � � �1;
M2(k;m;  (�)) for �1 < � � �5;
M3(k;m; �) for �5 < � � �2;
2k3m(4�� 3) for � > �2;
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3 o if k = 2; 4; : : :, m = 1; 3; : : :, then

H(f) �
8<
:

2k3m(3� 4�) for � � �1;
M2(k;m; �) for �1 < � � �4;
M4(k;m; �) for � > �4;

where �1 = 3k4k+8 , �2 = 3(8m+3k+8)4(8m+3k+6) , while �4; �5 are the only roots of the

equations M2(k;m;  (�)) = M4(k;m; �) and

M2(k;m;  (�)) = M3(k;m; �), respectively.All the estimates given above are exact.
Remark 3 Theorem 1 (3 o) implies the well-known estimate of the func-
tional am3 (a3 � �a22) for m = 1; 3; 5; : : :, � 2 IR[6].

For m = 2; 4; : : :, from Theorem 1 (1o) we obtain the estimate of thefunctional am3 (a3 � �a22) for � � m + 1 only. For � > m + 1, it is known[6] that the only function extremal with respect to this functional is thefunction with the coe�cients a2 = 0 and a3 = 1. This function, howeveris not extremal with respect to the functional H(f) investigated in ourpaper.From Theorem 1 we do not obtain directly any estimate of the functional
ak2(a3 � �a22), either (see [2]), on account of the necessary assumption
m 6= 0 used in the proof of Lemma 1.
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